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This paper considers the problem of b!-tnin4g an optimal control law, which is
coustralned to be a linear feedback of the avsllable measurements, for both
continuous and dtocrete time linear iy;tems subjcted to additive white process
notle sad ameasurg1et noi". Necessary conditions are obtained for mininizing a
q•iadrattc performance function for both finite eM Infinite terminal time cases.
The feedback gailns are constrained to be ti*e invariant for the infinite temaina
tiae cames. Yar all the cases considered, algorithas are 4erivwed for genersting
sequences ofir foeodUc geln aitrices vwich successively Uiprove the perfoirmnce
function. A co€ntinuous time nmilerica.1 example is included for the purpose of
demon••t ion.
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OPTDIAL OUTT FMBACZ CORM0L O7 LINEAR

BYTUS 1 PMW! 0 FORCING AND N NOISE

Vy Sure•sh X. Joshi

astmUy

IM pvblm of obtaiangaen optimal coatrol law, which is constrained to
be a feeldbs of the availableI iuassents, iS considered for both continuous

6.1 Moose%*-tlm 1imeat sysem subjected to addtive whtiit process noi&* and
m ssm! mise. Necssary c itti are obtained for ainlaislgs a quadra-

tic pu Iname tweetlea for both finite sad infinito trminal tim cases. Th.

feefteas gala matrices we cinstraied to be coetant for the infit* terainal

im eesee. Mw &. th ceses coesidert, s*rwthI are drivd for generat-

In8 eqnsmee of1 fteOek Sala matrices wbich successively Impove the perform-

-. s tomestim. A noa'*&I eemple Is given for tbe parpee of damstration.

M- 4 1 1015

m ro.1 s• dteZsp ftor proeeses vlich raft from process and asure-

int noise Is so IvVwUM probsI. It the process jumies wre inear, and if

tW pIeeme madI, asi the usI , e - aoie* we Oasesias s.d wIite, it is well

bm fto the sentrol Um wheb sma lase a quAdratic perx-tormce ftMution is

a Uises fftetUs of the optma setimste of the state. Thas, the applicastlu

of thiseet"i lUm seveeitate the use of o e&ia state esmetor. T 7i
0

dstAaI "p e" mW wt be attreett i, n a pratical viewpoint because of the --

Upb ae of tWe "Altieal eqmpimst requlired. In ddition, there exists a

"We epssebIility of alga e of the state estimator vben the noise input

* mtris, m/o€ the soe. of the forcing and as•innnt noise processes ore not

plot



known accurately.

For this reason, the design of a satisfactory controller, which needs the

feedback only of the avallsble plant measurements, is a problem of immense

practical importance. There have been nw.roua recent attempts in this area.

Those have proceeded mainly in two directions: pole shifting techniques using

output feedback; and suniuisation of a quadratic performance function using

output feedback. The former procedure is necessarily confined to deterministic

systems, while the latter procedure is also useful for the practically iapor-

tant stochastic case, in the sense that the apriori knovledge of the noise

statistics can be used to advantage. This paper considers the latter approach.

The noise-frae version of the linear quadratic optimal output feedback

control problem ws considered in references (1) through (4). The basic philo-

soph was to minmilse the perfosunce degradation caused by the constraint on

the control law. The constrained optimal control law depends on the initial

state; thereore, the approach was to minialse the value of the performance

tUction avera'sed over the Initial state (with apriori known statistics),

(refeimnces (3) YAd ()); or to minimise the "vorst" value of the performance

ftectiou, uAn the initial state to kn to lie within a bnpore*1ipeoid in the

state ope (ref. (2)); or to iniamize the zlinm ratio of suboptimal and op-

timl value of the peewfo e function* (ref. (1)). In all thee cases, the

poblem uas flas11y reduced to a complexm oliear optimisatiom problem.

In reoervises (3) -e (4), the noisoe--free case s conldered, and the

algehese neesw7 oeaditlo * wee dived. In addition, design of optimal

dYMiC of a Poeeoct•led orer uas also discussed in reference

(4). In retmrmee (5). Ase"a cose••e the stocbsetic problem, with white

procees Saise, but s - Mat noise. sAd derived the nocessar conditions

for optimahlty. MLeae (ret. (6)). comierod the above problem, with state

M ontrol dependout fort i noit*s Wt no mosm osit noise. All the efforts

deseribed soe eemdeie4 omly cotis time system. In addition, measure-

" "mldoise Vs eSO d to be seat. In preotleei , bvew, Ueasku*Wnt noise

is almost alq poseewt; therefore, it is irpm-tnt to consider the de~r•ding

effmea t the direct trammiittal of ameseamest noise through output feedback.

La reforerm. (7), Ue discrete-tilh, iite terminml time problem as considered

i necessary cacditi ona• obtained main dynamic prraming. Nowever, the

lafisite tamimi time Probiem vas nt considered, and a uinili sing &goritim

2
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vax not developed.

The purpose of this paper is to consider both continuous-time and discrete-

time lInea systems which are subjected to both forcing and measurement noise.

fte necessary conditions for optinality are derived for continuous-time systems

in the first part, using the matrix minimum principle (ref. (8)). Both finite

and Infinite terminal time cases are considered, the control lav for the latter

case being constrined to be a constant feedback of the noisy measurements.

Algorithes are derived to give sequences of successively better control gains,

for both finite and infinite terminal time cases. The discrete-tine case is next

considered. The necessary conditions are derived, using the discrete matrix

malnmm principle, for both finite and infinite teralanl time cases. For the

finite terminal time case. it is shorn that the necessary conditions coincide

with those derived in refereace (7) using d4ynmic programing, vhile for the in-

finite terminal time case, the feedback gais are costralned to be constant.

Algaithes wre .eveloped for all cases to generate sequeaces of feedback gains

vwicb suceesively improve the performance function. A continuous-t/ise wmri-

cal exm*le is give for the pArpose of 4dnestration.

A a x a systm matriz

I a x a tap" matrix

C a a Otput matrix

E epected vol%* Operator

o ma t reedback matrix

Sa x 9 matrix doined in the text
II blmiltonmla

I ,J ,k indic"e

J,3 pevrtoae fNctiosm for the fiaite end Infinite
te•uI•al-t t aeso"

a m a a coette matrix

t x a Lg4rage maltipler imtrix

3 term•lal time for the discrete case

P 0 a a Riceati-type matrix

3



i Q a x n weighting matrix for the state vector

R a x a weighting matrix for the input vector

8 n x n terminal state veighting matrix

Tr race operator
t tine

t rf terminal tine

U a-vector input

V n x n forcing noise covariance matrix

v n-vector forcing noise

V I x I ue-. ert noise covariance matrix

V I-vector me•stureent noise

z "-AmeaMsional state vector

y t-41maeooma, output vector

6(1,) Dirac delta tamctio

6(k) Coinecker dela fuction
t a z a stat. covartence matrix

I @saeft-Out* value of I

The @"eWonpI Vyi deaUee O threu'poe. of a matrix, mai 0-14 deotes the

Miate utOMaMI Time Cae

lb. p~etem is lvm tV

S - A(t)z(t) # 3(t)e(t) 0 v(t) (1)

y(t). C(t)a(t) * w(t) (2)

lawe a(S), BD), C(0) re a a a. a a 0, mA t a a mattees ams a(t). U(t), MA

$S) We respseeTl*U a a 1, mS 1, a t X I state vector, tiqt Vector, aMA

ow"p" wmt . w(S) ema s(S) ae wlt noise proceeoe, witb tamo mama, ad

EtT(% WMi)) * V(1)4(t-T) (3)



E[v(t)v (il) - w(t)6(t-t) (4)

vbwe V(t) > 0, W(t) > 0 are n x n and t x I matrices, and 6(t) in the Dirac

delta ftwntion. Also,

E[v(t)v (T)l - (5)

?he taltial state coveriance matrix in assumed to be knov:

[[x(o) T(o))] 1(o) - 0

Cosel•er the oblm, of uinIailJ:S the fawtiona.1

2 iT)8(t ) J 'L tatQ(ft)zt1 *4t)P t]Ut I (6)

bw*o Q(t) ) 0, o (1) 0 , 8 ' 0 are a a a, m x a, a x a matrice. Suppose

the entroal le 1o re•tlricted to be a feo4back or the output.

UWt a O{WY(t)

0 0(t)C(t)'{() * (Iv(()

Wo 0(at) to t"e a X I oteapt feedbck matrs.

We tiamiatloa aiie ftr direct tueamtt&1 of Wht. notise Into the

" ea via tesUelk. It to €slwly sees tbst the term Etu (t)i(t•u(t)1 is

lafriale, Olso. iCW(tSvW(0)1 w V(t)6(t-.i). Meis coo be avoided by Including

oAfl turt Pt of tSe eemtru emmargy vlC h 4c.. not Cot.WWA White 6o160. Tbu.

the followlal a ttned performance wtiee is to idered:

j.B)

1 S I t)Qt),tM(t} 0 It0 tl())nt) to( %)C WS (t) at (5)

Th1 not " tloe is mat directly Icluded too perttco,

hat MW Goepedle ofsect bWime. of Its 9 eedh 1 tdo Iie taken Into acciot

via tOw tat ,e ovei8* e.valwties eq"mttos. Ttes, e*soe tb *tat* cartabee

ma.tri dopedsno em piI F' t of the tesdbM k gala matrix and ltb. meirn

me the w smt asma e of tUe inpUt e6490&1 v111 be sUtO-

-. . -- "- mm •mmmam mm Iti iam mmmmIN



atl&U•y penalizsed In proportion to its eovariance matrix W, as Vill be seen

later. This foramlation thus provides a design technique in vhich the knovledge

of the noise statistics can be used to advantage.

The evolution of the covrisace matrix of the state x(t) can be easily de-

rived as
git ,a (A +, JGEGC * X(A DOC) ?,*)T . •TBT + V (9)
Ott

vwe E(t) a E(x(t)X7(t)J, Z(o) 1 E sad the symbol e(t) Is dropped for con-

The performam.. tNmction of eqatton (8) can also be written as

J I • •(SZ(t)
2

* ?rU *. CT ?G )Z) at (10)

It ts tepired to MISIlse tU J to (10) with respeet to 0 subject to the
@SmliSI (i).

It10 am possibl to *VWl the matrtz slalonm prtactpi. (ref. (8)).
DOsfL me h •k1tIi41mI

(( 2cTQOrC)t4

r r !i •C)Z * DL(A * LmCI?

Vw* 1(t) Is m as X metal of coette. wari e., The Taltatl asto" ..

"mISMSe t(0) a ZO. to, MA mUsas.. 1ie) sad V(l) m wMWA41 to be kaom
ealwtri . got"4 tUe me•trI slalow pIwinp4e. wed te gi4leat eatromw &e-

rlved Is Vfww (a). the s00 0m0oltlars fr optlmilty eta be srIv"

WInC•T , 0lC?.SPWl I.0 (12)

-[ (A" # 100. 0 P(An l aC) l l( nCOTC) (I3)



Ul (A + BGC)I + I(A + BGC)T + BGWGTBT + V (14)
dt

r(0) - (15)

P(t f 3 (16)

In t•e." equations, P(t) * 2K(t), and the symmetry of P(t) and K(t) is obtained

duringS the derivation beCeuse of the symmetry of the right-hand side of (13),

and because 8 a ST. Equations (12) to (16) describe a nonlinear two-point

boudawy val.ue problem. For a given 1(t), equw.ticni, (13) aMd (O) are linear

L P and Z, vhile for given P a-M 1, equ^tion (12) Is Ulivar in 4. It is inter-

ating to note that, ilthiough the seasureent noise-4epeadent portion of the

control signal was not welot.d in th* perforuarxe f~ucioa, "the neaur.ment

covariaaoe matriz V does teed to re4,ice the fedback gsan G tn equation (12),

as expected. Por the case with rfoct measuremnts (W a 0), t.e necesseary

conditions reduce to those of Axastor (W@. ý5)). vMs.t for the notse-free case

(V a 0, V a 0), the necessa•y coosttoes r•4uce ve tbose duo to 1*vize, Jobason,

amd Athus (ret. (W).

mnftnrt.t YD.aV5tLýn C44,

The aoc*osary •qo •ttome obhtlao4 s*owe r*qi&re be solutlon of a -omplex,

.W-oat boundaary value problem, and the feedbock 4&16 Ott) obtAlw' d Ito t.-

varying. A ma~tvwa sem.leo. of '.Us pr*Ulm Is tao rooatant -toofflc tact,

infnAlt. tovide&a %a. caso, with 0 coustrato" to to a t1so-1nw~rieat mastrl.

UNAW the". clrretafte*. witt& A, 5. C, 1, V cos8LAft, for & sLabIlItlng Owat-

pvit tood~bck gain Satris 1% it is veil knovu tba% Owe cov~ierv mact ria L(t)

tends to 6 cm- eattl s It 'A 0 &a t - -, :a tb* trestaont beC~m, It It as-

one" t•et, for the V, 0. V, "d the 4$waloe wader voz*I4evmt.o, I exist* NaO

to a poettive doftalte matrIA. This vwA14 IsdmW be trws If (V OW T so
pmOotlv* W lat*J•.

t5 We ONas, If the tVW.if• tmoa * *" the porfornace Mactiou of (10)

will be Iaatlat*' slace the Late#V*M teod* to a evestma ri1iie. T'!wrttare, It

Ia *mmlasful to &lalsi*AS 'be *c"*,. ratt.

tf F



or " Trr(Q + CTGTRGc)Z) (18)

where i is the st.eaf stat* (positive definite by assumption) solution of the

cowarlaae esquatim (9). Thus, the problem reduces to a static optiaitation

poblm. Detflag the Laera anm a

!(l,G,t) - 2Tr [(-CT(TRGC)l]

r [l(A + MC). +(A+ BGC) T

BMI *S )T (19)

Ahere It i a a x a cnstant m•trix of LekrgrAe multipliers, the aences•&ry con-

"4tiaons for a slalm are

A, - 0 b 00 • 0 (20)

*l*hb ftil Iy redwee to tbo s*t.y-e#tat* formu of equations (02), (13). MWd (14).

w~h9rogicui %w 1. wWn P & A1 & PT. 'W~s the necesary conditilons for the
Stsaltse Serad tSime probem, with coat•rc1 gMa. costrzaed to be constant,

w* elm lllamesme ao.lwar matrl &l&*bic equatlono. It obw.44 be noted that

tIse mlse-tee es.w o wt a o simle wMtlae of these reWults since, in that

ease, I * 0 trw sOUMe 0 .
A Imvtical AIsorltUm

coes~levis fet tbe flat~t twa~Lal t~ coe lt ~0( 0 M W) (Ata be tvo

feedee* yelss mesh Uth

(A *IOC? * ' ( VIC? *gaLMTI?(21)

I * ,0 1

-.[,(A o,,o , PC? o ,#,.. 20 .,. J."O.0,o] (22)
Atra 1 algeoeele a"allSatioe as owtltlad ts AppeMl12 A, It can

be SeY. Ow a

a



J(o°) 0 J(G I

k {tf [{RGOCjl BTPOX1CT + BTPOB(GO W R1

IRGOC iCT + BTP 0° 1 CT + BTPO°G-Wo

- (~1CZICT BTFOEICT +B T OB~iW}Te

{R eoCr1 JT+ jTP~z 1 CT" + BTpOBG1}]l(Cr1C T)-I dt

+ ?r t [(Go-0 ~)TBTpO (G-'4 dt (23)

Thus, if iso chosen to satisfy

FIG1crl CT * BTPO~ICT , PBl *0 (24))

we have

J(G0% -( ) (25)

Tsa a14wwblstsg . rithe ts

(a) choose an Initial 0(t

(b) o nta O(t) ustng (22)

(c) salve (24) swA (21) simultaneously for E I 01

(4) go to (b) after isar*aing the superscript by unity

ftuo, a o.weues#ve reduction In J to obtained. In the proof of the algo-

ritti, It bas been "asomed that 1(t) 0 0. Mie vwil be true if E(O) > 0;

bowvur, It to wet necessary that E(O) be positive 4efinite for E(t) to be

poettI, detite.

For the tanialte terulo tiLme rCae, Srter a siail..r mansipulation (given

ta the Apposaio A), it can be sbow that equation (23) holds with the intngra1l

slam vin'ed fag 4 e reacIt 01 . Tharefore, the algorlthm given In steps

(a) - (4) vwil stiU bold, witb equatioms (21) and (22) replaced by their

steead-oteT versions, it oecb 0 is stable, t ) 0 at each stage.

9



A NUMERICAL EXAMPLE

The following continuous-time system is considered for the pu .

demonstration of the technique developed:

dit [ 20 250 01 U 1 I

S'2 4 -5 1 x2 + 1+ v 2

0 += x~2 +
Y2 0 1 0w 2

. x3L

V :0 0. C)1 0

0 0 0. o4

[0.01 0

The performance function to be minimized was that in equation (17), with

0 i0 R=[ 0

The al4oritbe developed in the text was used. At each iteration, the simultcai-

so" nonlinear equations in I and G (equation (12) and the steady-stat,• versic:n

of equation (l1)) were solved using Newton's method. The initial feedback gain

matrix was:
0o -9.9 -6.T

-0.279 0.02

10



The choice vms arbitrary, the only restriction being the stability of the matrix

(A + °C).

The program converged after five iterations, to:
. -6.879 E-01 -5.196 F-01

At each iteration, it vas verified that (A + DC) vas stable. Positive

definiteness of I followed because of the positive definiteness of V. The value

of the performnce function for the initial G vas 3.46, vhich vsas reduced to

0.3443 at the final iteration.

DISCRLTZ-TD( SYSTEMS

PInite Terminal Time Case

Consider the discrete-time system

x(k*l) a A(k)x(k) + B(k)u(k) * v(k) (26)

y(k) a C(k)x(k) * v(k) (27)

Notations and dimensions are the sam as in the continuotm case. v(k) and v(k)

we sw mein, wbite *noise procosses, with

EIy(ki)v (0) - V(k)6(k-i) (2)

Elv(k)v T(i) - V(k)6(k-i) (29)

and
E Tv(kW i) a 0 (30)

EIz(o) ) ( X(o) - 0 (gives)

were e() to the Kz', kewr delta fmuction.

v(k) > 0, V(k) > 0

Me perfeamae fuwtion to be minimized is

11



Js-E •X zT(k)Qlk)x(k) * U?(k)R(k)u(kij) 2 E xT(N)U(1) (31)2 1. -0k2

s"Ject to (26), (27). wA the restrictioni that

u(k) - G(k)y(k)

a G(k)C(k)x(k) G O(k)v(k)

Q(k) > o, R(k) > 0. s > 0 (32)

"" srnker lta t• t •nc Is atbatlicaiy well defined; thus the performance

ftWCQm Of eqOmtIot (31) eca be Sthifl? &l a given belov:

Tr~ [IQ k * CJ(k)G T (k)R(k)o(k)C(k)l l(k]
kO

* • 54 (I)2 1 kuOT~)~)~)~)

* r( m) (33)

It is Ma to "M that tW ae@S wmo mtrtx t(k) a E[z(k)i T (k)] OIlves

Z(kl) a (A *# C)z(k)(A # aocT * .wwi7 + v (34)

Ia •tti.i (3b). 9 U M .(-) bas been 4ropped fror oovmtoi e in met of the

riI-md side Ysi-Ib*sl. TIbus the problim r*nuee to the rtruiuation of J
In (13) asktwt to tm constraint (34), with Z(O). V(k) aWd Y(k) wun apriori.
The U4eae matrix aIanm priniple" give in referene (8) can be ramily

used. boeUte mamiltoallam

n(Z(nt).o(n),,X(nr.))

"* '4(Ah) + 31(k)O(k)C(k))t(k)(A(k) + S(k)O(k)C(k )) T

""b1 ,Ih(-r)OW (k)2*'(k'.(k T !•l (35)

j,

IIII1i8ma m la ta i



In the treatment belov, all the variables at time k are denoted without .(k),

vhereas the variables at time (k+l) are denoted with .(k+l).

In (35), X(k.1) is the a x a matrix of "t costate variables". Applying the

discrete matrix minima principle and the gradient matrix forumiae of reference

(8) •tho necessary conditions are

0 (R + TP(k.1)B).l B TP(k~l)AIC T(CEC? T *W (36)

N(k) - Q C CTiTC * (A * DOC)TP(k.1)(A + DOC) (37)

E(k*l) s (A S0C)Z(k)(A W 3OC)T + .WGTqT + V (38)

P(M) - 8 (39)

r(0) = 0 (0o)

wbe, 8s in the ctimaous time case. P(K(k* ) a PT() W ote that in the

discret-tims ca*se it has been possible to obtain 0 explicitly in (36). (It

is oa swNd that t(k) is positive definite, C has rank I, so that Ct(k)CT , is

positive deftnito. A sufficient condition for t(k) to be positive definite for

k - 0 is that Z(O) is positive definite, altboub this is not necessary.)

sstios (36) to (40) defne a noslnear matrlx two point boumdary-value

roblna. It ea be vmifled tbat the cowItioss are evqivalent to those ob-

tamed to refrence MT) usig 1 i3 c Psreni .

lninite Duration Case

As in the ootlis time case, if A, B, C, V, W, an 0 ste constant and

(A. +3) is stable, it can be sbn that the state covaiawo matrix . I >

0 as k # 0 =M Sat&IftIe (38) with kOl a •". Furtbeamre, it is assmed that

j to poeitive defasit, for the V, V. and 0 and the dynamics under consideration.

fths Vl4 igaee be tnue if (V + WM T aT3) is positive definite. As in the

cosuoi ease, the modified p•toramicte function is

IS 6 1E~jt(1)Qxt(k) + u T(k)RU(k)J Ii

13



or ~. Tr{(Q +CTGTRG;C)!) , r(GTRW (42)t2

per this statIc optinisation problem havina the constralat (38) with

-k " a i. defin, the La.Unian as

IMOX Tr (Q +cTGWC~l + Tr[ R~

wers Iis the n x n matrix of Lqavwe multipliers. The necessary conditions

are obtalnd by equating "t -a and a3 to zero:

0 a -(R + DTp3)' 1Tp5 cT(CjCT + W)-1  (44)

P a Q .CTO7R0C + (A * DC)Tp(A + BC) (45)

I a (A 3001)(A + Dc) T + v * D TW T (46)

*me, as Is the continuous cas, P A 2• * P. This is a set of an-" near

itrah .3eb'.C equatioss. SinceR > 0, > 0 and rwak (C) a L, the Inverses

iN O (h) st.
A Ihm-inC&l Al1Roriths

lhfrt the fite tMmLmal tim. case, let o0 (.) a 0 1 (k) be

two ftehbwk SIM, Such that

tl(k.1). (A + OC)Z(k)(A + WIC)T- WWIT?* VI. 0. 1 O(T)

aM
P0(k) a cT'OMo~c . (A * OOC)TF(k•1)(A + MOC) (48)

AtW a 3sWAo am•aletiom as oqtlined in Appendix 3, it can be proved

- 5ZI Tr CT + v)) (o + ÷) T ( .+ BT3p(kl)(Gp + 6)

31 (t+SP(k43) (e1 + It



i (R + BTP (k+l)B) 'B P (k+I)ArElcT(ctlcT + w)-I (50)

In writing equations (47) through (50),.(k) has been dropped in most places for

conventence, except when required for clarity. Letting

G 1 -g (51)

in (1.9), we have

J(GO) -J(G ) > 0 (52)

Thus, a minimizng ailgorithm is

(a) choose initial G0Wk)

(b) obtain P 0 (k), k a O...,N frca the linear equation (48)

(C) obtain ]4 (k) by solving the nonlinear difference equation obtained

b• substitution of (51) in (47)

(4) obtain 01 (k) using P0 (k.1) and E1(k) determined in the above steps

(e) go to (b), vith the superscript raised by unity

Thus a sccessive reduction In J to obtained. For the infinite terminal

tIme case, after a similar manipulation (given in the Appendix B), it can be

shown that

J(o°) -7(o0. * , [2(Ctc6. +W,+& + g)T(', + 5TF1P)(0 + g)

" (01 * g)T(i + * .4B)( )1] (53)

fhere 11 and PO stlsfyr the stic versions of (17) and (48). and

6- (R *TpOO)'lDTpOA)1CT(CO1 CT + w)"C (54)

Thus J(.10) < J(O0) vith 0 1 -•, and the resulting sequence of OG's
impoves the value of J suceessively if each (A + DOC) is stable, and each

) 0.

fhis, a nmasical algorithm similar to that for the finite terminal time

ease is obtsined.

3.
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Tb. prticeally important problem of obtaining an optimal output feedback

control law for lnear system subjected to both forcing and measurement noise

was considered. lecesasay conditions for optimality were obtained for continu-

one-time sad discrete-time systs, using the matrix ainimm principle. Both

finite and infinite terminal time cases were considered for each problem. Al-

goritks were derived for obtaining sequences of feedback gains which guarantee

a maonotomic imov t of the performnce function. The method developed

provides a pmerful sad practically feasible design technique in which the a-

priori knowledge of the noise statistics is used to advantage.

Although the necessary conditions for a min•.m were obtained, the question

of exleteu Is still unanowered, and needs further attention. Also, the con-

vwgs=e propertles of the sequemee of feedback gains generated deserve more

attention.

For the lnfinite termial time case, it was assumed that I > O. The case

* 0 Vill be a sileld extension of the vork of McLane (reference (6)); however.

the cum 0 seeds fUrther Invstigation. Also, the technique developed in

this paeWr can be easily modified for the design of optimal dyrnmilc compensators,

by following a procedure similoar to that by Levine et. al. (reference (W)).

16



APPIUDIX A

A1MITHEM M• U ICCS•MIV REDUCTION OF TU

PWOBHUE FUUCTION: CONTINUOJS TIME CASE

Since

±JL wazO. rl)pof a fr [)±,4oý El -o Tr [to-.r t (A-i)

After simplificatlon using *quation (21) and (22) and intopating both sides
betwem 0 and teM

J(O) J(o) Tr Ift [3(CO. CZ)Ct 1 pO] at

0

Tr~ p (rl(CT(0 1 eO~c _ CTo;lTolC) I cit

I *~Tr tf~ WOW%3 _ 011W1T )BT~0 ct (A-2)

U3 IM the trece Ideattlios In reference (8), It can be proved that

eqw"am (A-2) &d (23) atr equivalent.

Infinite Terminal Tim. Case

In tWie 0a6s, tbe equations (13) and (14) take on their steady-stat. forum

With! rep~ael" E. now,

Tr(o.Pol + T ?w( o ) mo1 (A-3)

but

- (A + nKc) + e (A + 301C)T + Dmln'sTlT - (A-4)

* -(A S 30c) T P0 - P0 (A + D.0C)- (Q + c To0 RoMc) o (A-5)

17



Replacins the first and second null matrices in (A-3) by left-hand sides

of (A-4) and (A-5), respectively, after simplification,

,TO°0 ) 1 (a1 T(B(G°0 - 1 )C1,°) . 1-r([(CTG:Roc. CTi1TiGC)l

I Tr ((B(G O? - Gl- 1T )BT)PO) (A-6)

Similar to the finite terminal time case (A-6) can be shovn to be equivalent to

(23), vlth Integral sigps remove4, and replaced by

rl8

L Ib a



APP•DIIX B

AWAMTD FOR SUCCU8IVZ RMUCTION OF THE P•MROMNANCE

FUNCTION: DISCRNTE-TIDE CASE

Tb. eqressios

Tr[( (ekk.1) - t1 (*4))P ()Lk1) - ?r((ZO(k) - •(k))POw]

em be abem to be equal to the followin expression, after substitution for

(Zo(k.l) - t(r ic) s V (b4) and for POW() fr (48), respectively, in its

tinrt mad secoad ter, and after some maipvldtioa:

.(S(0 - oIi _ lT)3IP 3(kol)) - 2 Tr(AZcT(GO°- o1)TBTpO(k*l)3

- Tr 1Cl(ol T 0TP0 (k.1)no - OGMTP°(kl)JM° )C]

- TW, (t°- Z1 )(c TGo°cY *O

Attar want the two .apresuoas above tram k a 0 to 9 - 1, a nd after

so" maItalatiom, the folloin equation Is obtained

J(0°) - 3€#) -1 N ,[ (,OUTS - , 'M')P°(k.l)l
2 Z unof'3

5-1

k,0

5-1
1 Z r[1lcT(oG'29T 0(k+1) W3o - o'TBTPO(k4~x) no')c]

2k0

*I T. xctt (0 W3 - 0M1W)CI
2 ___

... .. . .. 1iI I I

I tri (amO 0 - a Wb Mv

19



Ulsing the trace identities in reference (8), it can be shown that (B-I)

and (49) are equivalent.

Infinite Terminal Tiae Case

In this case equations (37) and (38) becoae equations (45) and (46),

respectively. Now,

r((fO-f1)PO) - Tr (&-:l)p0] o

Substitution for (V0 t 1 ) in Ow first term using equation (46), and for F ii

the wocoad torn, using equation (45), and proceeding exactly as for the infinite

teorinal timme cas, equation (53) can be obtained.
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